Affiliation:
1. Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
Abstract
Morphing technology aims to improve the performance of structural components by drastically altering their shape in response to conflicting operational requirements. Thus, achieving the optimum operation of morphing structures is a rather challenging task which includes non-linear effects associated with the large deformations and rigid body motions, the actuator performance and the interactions between active and passive components. In this paper a formal optimization procedure is developed to provide the optimal design of a morphing structure with shape memory alloy actuators. The optimization of the morphing structure is formulated as a multi-objective problem aiming to concurrently optimize the passive structural components and the actuators. Subsequently, a multi-level optimization scheme is presented and implemented. Case studies prove the capability of the multi-objective optimization framework to produce robust designs of the morphing structure that simultaneously improve all performance metrics. Furthermore, it is illustrated that the proposed multi-level optimization scheme may produce similar optimal designs, compared with the conventional aggregate optimization scheme, but with significant computational gains.
Subject
Mechanical Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献