Post-seismic topographic shifts and delayed vegetation recovery in the epicentral area of the 2018 Mw 6.6 Hokkaido Eastern Iburi earthquake

Author:

Jie Dou1ORCID,Xiang Zilin1,Wang Xiekang2ORCID,Zheng Penglin1,Avtar Ram3,Xinyu Chen3,Scaringi Gianvito4,Wanqi Luo1,Yunus Ali P5ORCID

Affiliation:

1. Badong National Observation and Research Station of Geohazards, China University of Geosciences, Wuhan, China

2. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China

3. Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan

4. Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Prague, Czech Republic

5. Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India

Abstract

The 2018, Mw 6.6 Hokkaido Eastern Iburi earthquake in Japan triggered over 10,000 landsliding in an area spanning about 500 km2, altering the local topography and leading to the accumulation of loose deposits on hillslopes and in valleys. However, a comprehensive post-seismic landslide inventory and an assessment of topographic changes are lacking, hindering a quantitative hazard assessment. Additionally, the extent of vegetation recovery in areas affected by coseismic landslides, a key indicator of post-seismic debris flow hazard, has not been evaluated. Here, we utilize high-resolution digital elevation models and multi-temporal satellite imagery to analyze topographic changes and vegetation dynamics in the earthquake’s epicentral area (seismic intensity >5.5). We observe that the event roughened the overall gentle topography of the region and made the slopes steeper. Owing to the absence of significant rainstorms and snowmelt post 2018, only a few debris remobilizations (60) and new landslides (80) have occurred in the affected region. Moreover, we noticed a slow vegetation recovery in the post-seismic phase, suggesting that the likelihood of debris flows and gully erosion remains elevated, highlighting the need for continued monitoring and assessment.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3