A comparative study of 3D printing and heat-compressing methods for manufacturing the thermoplastic composite bone fixation plate: Design, characterization, and in vitro biomechanical experimentation

Author:

Kabiri Ali1,Liaghat Gholamhossein12ORCID,Alavi Fatemeh1,Ansari Mehdi3,Hedayati Seyyed Kaveh1

Affiliation:

1. Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

2. School of Mechanical & Aerospace Engineering, Kingston University, London, UK

3. Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

Abstract

Metallic bone fixations, due to their high rigidity, can cause long-term complications. To alleviate metallic biomaterials’ drawbacks, in this research new Glass Fiber/Polypropylene (GF/PP) composite internal fixations were developed, and an investigation of their mechanical behavior was performed through in vitro biomechanical experiments. Short randomly oriented, long unidirectional prepreg, and long unidirectional fiber yarn were considered as reinforcements, and the effects on their mechanical properties of different manufacturing processes, that is, 3D printing and heat-compressing, were investigated. The constructed fixation plates were tested in the transversely fractured diaphysis of bovine tibia under axial compression loading. The overall stiffness and the Von Mises strain field of the fixation plates were obtained within stable and unstable fracture conditions. The samples were loaded until failure to determine their failure loads, strains, and mechanisms. Based on the results, the GF/PP composite fixation plates can provide adequate interfragmentary movement to amplify bone ossification, so they can provide proper support for bone healing. Moreover, their potential for stress shielding reduction and their load-bearing capacity suggest their merits in replacing traditional metallic plates.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3