Drilling of bone: Effect of drill bit geometries on thermal osteonecrosis risk regions

Author:

Ali Akhbar Mohd Faizal1ORCID,Yusoff Ahmad Razlan1

Affiliation:

1. Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Malaysia

Abstract

Bone-drilling operation necessitates an accurate and efficient surgical drill bit to minimize thermal damage to the bone. This article provides a methodology for predicting the bone temperature elevation during surgical bone drilling and to gain a better understanding on the influences of the point angle, helix angle and web thickness of the drill bit. The proposed approach utilized the normalized Cockroft–Latham damage criterion to predict material cracking in the drilling process. Drilling simulation software DEFORM-3D is used to approximate the bone temperature elevation corresponding to different drill bit geometries. To validate the simulation results, bone temperature elevations were evaluated by comparison with ex vivo bone-drilling process using bovine femurs. The computational results fit well with the ex vivo experiments with respect to different drill geometries. All the investigated drill bit geometries significantly affect bone temperature rise. It is discovered that the thermal osteonecrosis risk regions could be reduced with a point angle of 110° to 140°, a helix angle of 5° to 30° and a web thickness of 5% to 40%. The drilling simulation could accurately estimate the maximum bone temperature elevation for various surgical drill bit point angles, web thickness and helix angles. Looking into the future, this work will lead to the research and redesign of the optimum surgical drill bit to minimize thermal insult during bone-drilling surgeries.

Funder

Universiti Malaysia Pahang

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3