Creep experimental study on the lumbar intervertebral disk under vibration compression load

Author:

Yang Xiuping12ORCID,Cheng Xiaomin12,Luan Yichao12,Liu Qing1,Zhang Chunqiu1

Affiliation:

1. Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, P.R. China

2. National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, P.R. China

Abstract

The intervertebral disk cushions the load generated by human activity and absorbs energy to keep the spine moving steadily. Vibration condition is one of the important causes of disk degeneration. Creep experiments using the sheep lumbar intervertebral disk were carried out under vibration compression. Regularities of the strain of the disk with time were obtained and compared with those of static load. The influence of vibration frequency and time on the creep properties of the intervertebral disk was analyzed. An intervertebral disk three-parameter solid creep constitutive model considering vibration factors was established and the parameters in the model were identified. The results show that the strain of the lumbar intervertebral disk exhibits an exponential relationship with time and is unrelated to static compression or vibration load. Under the same vibration amplitude, the creep increases with vibration frequency and the relationship between them is nonlinear. The vibration frequency has a significant effect on the strain. The creep rate decreases gradually with time and is obviously influenced by vibration frequency at low vibration amplitudes. The creep prediction results obtained using the constitutive model with the time-varying material parameters are in good agreement with the experimental results. The two elastic moduli in the model decrease with time and the viscosity coefficient increases with time.

Funder

national natural science foundation of china

natural science foundation of tianjin city

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3