Non-invasive grading of brain tumors using online support vector machine with dynamic fuzzy rule-based parameters optimization

Author:

Harati Kabir Vida1,Mahdavifar Khayati Rasoul1ORCID,Fallahi Alireza2

Affiliation:

1. Biomedical Engineering Department, Shahed University, Tehran, Iran

2. Hamedan University of Technology, Hamedan, Iran

Abstract

Non-invasive grading of brain tumors provides a valuable understanding of tumor growth that helps choose the proper treatment. In this paper, an online method with an innovative optimization approach as well as a new and fast tumor segmentation method is proposed for the fully automated grading of brain tumors in magnetic resonance (MR) images. First, the tumor is segmented based on two characteristics of the tumor appearance (intensity and edges information). Second, the features of the tumor region are extracted. Then, the online support vector machine with the kernel (OSVMK) by dynamic fuzzy rule-based optimization of the parameters is used for the grading of tumors. The performance evaluation of the proposed tumor segmentation method was performed by manual segmentation using similarity criteria. Also, tumor grading results compared the proposed online method, the conventional online method, and the batch SVM with the kernel (batch SVMK) in terms of accuracy, precision, recall, specificity, and execution times. The segmentation results show a good correlation between the tumor segmented by the proposed method and by experts manually. Also, the grading results based on the accuracy, precision, recall, and specificity, 95.20%, 97.87%, 96.48%, and 96.45%, respectively, indicate the acceptable performance of the proposed method. The execution times of the introduced online method are much less than the batch SVMK. The method demonstrates the potential of fully automated tumor grading to provide a non-invasive diagnosis in order to determine the treatment strategy for the disease. So the physicians, according to the tumor’s grade, can match the treatment of the brain tumor to the patient’s individual needs and thus make the best course of treatment for each patient.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survival prediction model based on PCA-HSIDA-LSSVM for patients with esophageal squamous cell carcinoma;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3