Enhancing Apoptosis and Overcoming Resistance of Gemcitabine in Pancreatic Cancer with Bortezomib: A Role of Death-Associated Protein Kinase-Related Apoptosis-Inducing Protein Kinase 1

Author:

Guo Qingqu1,Chen Ying1,Wu Yulian1

Affiliation:

1. Department of Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Cancer Institute of Zhejiang University, P.R. China

Abstract

Aims and Background To investigate the role of the apoptosis gene, DAP (death-associated protein) kinase-related apoptosis-inducing protein kinase 1 (DRAK1), which is involved in enhancing cell sensitivity and overcoming cell resistance to gemcitabine in pancreatic cancer cells by the proteasome inhibitor bortezomib. Methods Cultured human pancreatic cancer gemcitabine-sensitive cell lines (bxpc-3) and gemcitabine-resistant (panc-1) cell lines were divided into four groups: control, treatment with bortezomib, treatment with gemcitabine, and the two-drug combination. Expression of DRAK1 genes in each group was detected by using reverse transcription-polymerase chain reaction and western blot. Apoptosis in the pancreatic cancer cell lines was measured by flow cytometry. Results We found that the effects of growth inhibition and apoptosis of gemcitabine on both pancreatic cancer cell lines were enhanced by bortezomib. Treatment of panc-1 and bxpc-3 cells with bortezomib (100 nM) and gemcitabine (50 μg/ml and 0.05 μg/ml, respectively) induced an increase in the levels of DRAK1 mRNA compared with the control and single-agent treatment. Furthermore, immunblotting analysis in panc-1 but not bxpc-3 cells showed similar changes in the expression of DRAK1 protein produced by combination therapy. Conclusions Our results demonstrated that bortezomib enhanced cell sensitivity and overcame cell resistance to gemcitabine in pancreatic cancer cells, which may be attributed to DRAK1 induced by bortezomib and the combination with gemcitabine.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3