The Pathways of Cell Death: Oncosis, Apoptosis, and Necrosis

Author:

Trump Benjamin E1,Berezesky Irene K.1,Chang Seung H.1,Phelps Patricia C.1

Affiliation:

1. Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA

Abstract

The pathways and identification of cell injury and cell death are of key importance to the practice of diagnostic and research toxicologic pathology. Following a lethal injury, cellular reactions are initially reversible. Currently, we recognize two patterns, oncosis and apoptosis. Oncosis, derived from the Greek word "swelling," is the common pattern of change in infarcts and in zonal killing following chemical toxicity, e.g., centrilobular hepatic necrosis after CC14 toxicity. In this common reaction, the earliest changes involve cytoplasmic blebbing, dilatation of the endoplasmic reticulum (ER), swelling of the cytosol, normal or condensed mitochondria, and chromatin clumping in the nucleus. In apoptosis, the early changes involve cell shrinkage, cytosolic shrinkage, more marked chromatin clumping, cytoplasmic blebbing, swollen ER on occasion, and mitochondria that are normal or condensed. Following cell death, both types undergo postmortem changes collectively termed "necrosis." In the case of oncosis, this typically involves broad zones of cells while, in the case of apoptosis, the cells and/or the fragments are often phagocytized prior to their death by adjacent macrophages or parenchymal cells. In either case, the changes converge to a pattern that involves mitochondrial swelling, mitochondrial flocculent densities and/or calcification, karyolysis, and disruption of plasmalemmal continuity. The biochemical mechanisms of cell death are currently under intense study, particularly concerning the genes involved in the process. Pro-death genes include p53, the ced-3/ICE proteases, and the Bax family. Anti-death genes include ced-9/Bcl-2 and the adenovirus protein E1B. It is clear that ion deregulation, particularly that of [Ca 2+]1 plays an important role in cell death following either apoptosis or oncosis. Genetic evidence strongly indicates that activation of proteases is an important step, possibly very near to the point where cell death occurs.

Publisher

SAGE Publications

Subject

Cell Biology,Toxicology,Molecular Biology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3