Microstructure, mechanical and tribological characteristics of AZ91D-HAp-TiB2 hybrid nanocomposites synthesized through the stir casting route

Author:

Bindu MD1,Shamla PC1,Anooja AU1ORCID,Rekha L1,Ramachandran KK1

Affiliation:

1. Department of Mechanical Engineering, Government Engineering College Thrissur, Thrissur, Kerala, India

Abstract

The aim of this study is to develop a novel magnesium-based nanohybrid composite for potential orthopaedic bioimplant applications. The hybrid nanocomposites were fabricated with AZ91D magnesium alloy as the matrix and hydroxyapatite (HAp) and TiB2 nanoparticles as reinforcements, through the stir casting route. The nanocomposites were synthesized with a fixed concentration of HAp (5 wt%) and different concentrations of TiB2 (2, 4 and 6 wt%). The microstructure of the fabricated composites revealed that the grains are significantly refined with the addition of nanoparticles. The AZ91D-5wt%HAp-2wt%TiB2 hybrid nanocomposite is observed with relatively low porosity, without significant agglomeration of the reinforcement particles, and exhibited the highest tensile and compressive strength with considerably higher ductility than the base AZ91D alloy and the nanocomposites with 4 and 6 wt% TiB2 (about 21% and 34% improvement in compressive and tensile strengths, respectively, compared to the AZ91D alloy). The refinement of grains due to the addition of nanoreinforcements and the alleviation of micro-strain up to a certain extent due to the presence of HAp nanoparticles together with the negligible porosity and agglomeration are the major reasons for the superior strength and ductility. The wear test results showed that the nanocomposite with 2 wt% TiB2 has superior tribological properties. The studies revealed that the AZ91D-5 wt% HAp-2 wt% TiB2 hybrid nanocomposite is a potential material for temporary orthopaedic bioimplants due to its superior strength, ductility, and tribological properties together with the possible enhanced biocompatibility and corrosion resistance due to the presence of HAp particles.

Funder

All-India Council for Technical Education

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3