Utilization of waste spent alumina catalyst and agro-waste rice husk ash as reinforcement materials with scrap aluminium alloy wheel matrix

Author:

Dwivedi Shashi Prakash1ORCID,Sharma Pardeep2,Saxena Ambuj1

Affiliation:

1. Department of Mechanical Engineering, G. L. Bajaj Institute of Technology & Management, Greater Noida, UP, India

2. Mechanical Engineering Department, Panipat Institute of Engineering and Technology, Samalkha, Haryana, India

Abstract

In this study, an attempt was made to utilize waste products from industries to develop composite materials. In the present study, car scrap aluminium alloy wheels (SAAWs) was used as matrix material. Waste rice husk ash (RHA) was collected from a rice mill to utilize as a primary reinforcement material. Spent alumina catalyst (SAC) waste was used as a secondary reinforcement material. SAC was collected from the oil refinery industry. These wastes produced lots of soil and air pollution. However, by utilizing these wastes, some environment pollutions can be reduced. Car scrap aluminium alloy wheels (SAAWs) based composite material was developed using RHA as primary reinforcement material and SAC as a secondary reinforcement material by stir casting technique followed by squeeze pressure on the universal testing machine (UTM) in mushy zone. Microstructure behaviour shows a uniform distribution of RHA and SAC in a recycled aluminium alloy matrix. Mechanical properties such as hardness, ductility, compressive strength and tensile strength were improved using RHA and SAC as reinforcement material simultaneously in SAAWs matrix material. Thermal expansion behaviour, soil degradation test and corrosion loss were also observed to see the effect of agro-waste RHA and SAC in recycled aluminium alloy.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3