Experimental investigation of a solar still system with a preheater and nanophase change materials

Author:

M Jothilingam1,N Balakrishnan1,T.K Kannan1,Devarajan Yuvarajan2

Affiliation:

1. Department of Mechanical Engineering, Gnanamani College of Technology, Namakkal, TN, India

2. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, TN, India

Abstract

Solar desalination systems are crucial for generating fresh water, particularly in regions with water scarcity. They harness renewable solar energy, making them sustainable and cost-effective in remote areas. Solar desalination addresses water scarcity challenges with a sustainable, decentralized, and efficient approach. The objective of this study is to analyze the impact of varying depths of basin water on the overall productivity of distillate in a solar distillation system. The research specifically investigates three distinct scenarios, focusing on the concentration of freshwater at different depths. The investigation extends to the analysis of temporal variations in heat transfer loss for three different phase change materials (PCMs) namely paraffin wax  +  nano CuO, paraffin wax, and lauric acid. This study also examines the impact of varying depths of basin water on the overall productivity of distillate in three distinct scenarios. In all instances, it has been observed that the more concentrated form of freshwater can be found at a depth of 20 mm. The water basin temperature lowered by 44.78% for paraffin wax  +  nano CuO composite, in comparison to paraffin wax (45.31%) and lauric acid (47.37%) when the water depth was increased from 20 mm to 60 mm. The equations pertaining to energy conservation and heat transfer in the solar distillation system are presented. The investigation also encompassed the analysis of temporal variations in heat transfer loss for three unique PCMs. The study recorded an increase in the total distillate freshwater of 3480, 1248.5, and 2637 ml/m2/day for paraffin wax  +  nano CuO, lauric acid, and paraffin wax correspondingly. Lauric acid has exhibited a level of performance in terms of total distillate.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3