On the optimized fused filament fabrication of polylactic acid using multiresponse central composite design and desirability function algorithm

Author:

Maalihan Reymark D12ORCID,Aggari John Carlo V3,Alon Alvin S4,Latayan Roy B5,Montalbo Francis Jesmar P6ORCID,Javier Alvin D2

Affiliation:

1. Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA

2. Department of Chemical Engineering and Material Testing and Calibration Center, Batangas State University, Batangas City, Philippines

3. Department of Electronics Engineering and Manufacturing Research Center, Batangas State University, Batangas City, Philippines

4. Department of Electrical Engineering and Digital Transformation Center, Batangas State University, Batangas City, Philippines

5. Department of Mechanical Engineering, Batangas State University, Batangas City, Philippines

6. College of Informatics and Computing Sciences, Batangas State University, Batangas City, Philippines

Abstract

Efficient optimization of polymeric materials in fused filament fabrication 3D printing (FFF 3DP) is crucial for productivity, cost reduction, resource conservation, consistency, and enhanced part performance. This study employed a multiresponse central composite design of experiments (CCD-DOE) with the desirability function algorithm (DFA) to optimize printing settings on polylactic acid (PLA) using a commercial FFF 3D printer. The goal was to identify optimal parameters for faster build time and reduced material usage in PLA part fabrication. The fabrication process involved computer-aided design and modeling of standard PLA dogbone specimens, meeting ASTM-D638 Type 1 tensile test standards. These specimens were then 3D printed using Ultimaker Green RAL 6018 PLA filament and a 2+ model printer set at varying print parameters. Reduced second-order polynomial models for printing time and PLA weight were generated using stepwise regression, eliminating noninfluential parameters. The models revealed that higher layer thickness, increased print speed, and lower infill density resulted in faster printing times, while lower infill density and higher layer thickness led to lighter PLA prints. DFA analysis determined the optimal settings as a layer thickness of 0.26–0.30 mm and an infill density of 35% for minimizing printing time and PLA weight. The stress–strain curves displayed characteristic high-strength, brittle behavior under tension, while tensile testing of optimized PLA parts revealed increased strength with low strain at the break when layers were aligned parallel to the applied force. These findings advance additive manufacturing and provide practical guidelines for high-quality 3D-printed PLA components. Optimizing FFF 3DP parameters enables efficient production with reduced time and material usage, enhancing cost-effectiveness and the fabrication of high-performance 3D printed products.

Funder

Batangas State University Institutional Research Grant

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3