Investigation on the mechanical and tribological behavior of tungsten-reinforced Ti-5Al-2.5Sn composites

Author:

Giridharadhayalan M.1,Ramkumar T.1ORCID,Selvakumar M.2

Affiliation:

1. Department of Mechanical Engineering, Dr Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, India

2. Department of Automobile Engineering, Dr Mahalingam College of Engineering and Technology, Pollachi, Tamil Nadu, India

Abstract

The composite material under this investigation was fabricated using the microwave sintering process. The matrix materials chosen for the preparation of composite materials include pure titanium (Ti), aluminium (Al), and tin (Sn). Tungsten (W) is used as the reinforcing material, with variable weight percentages of 0.5%, 1%, 1.5%, 2%, and 2.5%. The purpose of this study is to assess the fundamental mechanical properties (microhardness, elastic moduli, fracture toughness, contact stiffness, etc.) and surface degradation properties (wear) of the composite materials that were fabricated. Furthermore, energy-dispersive X-ray spectroscopy with line mapping analysis were performed to verify the existence of reinforcement particles evenly distributed in the matrix material and scanning electron microscope (FE-SEM) examination was done on the wear tested samples. The density of the Ti-5Al-2.5Sn-2W composite material has been enhanced in comparison to the density of Ti-5Al-2.5Sn. The results of the Micro Vickers hardness test indicate that the Ti-5Al-2.5Sn-2W composite exhibits a hardness that is 3.1% higher than that of the Ti-5Al-2.5Sn material. In comparison to Ti-5Al-2.5Sn, the Ti-5Al-2.5Sn-2W composite displayed a 10% lower wear rate and 7% coefficient of friction, respectively. The findings show that increasing the weight percentage of tungsten (W) greatly enhances the mechanical and wear characteristics of the composites.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3