Effects of multi-axial compression and double-step aging on the microstructure and mechanical properties of Al alloy 7075

Author:

Yadav Aditya Prakash1ORCID,Padap Aditya Kumar2

Affiliation:

1. Mechanical Engineering Department, C.I.P.E.T. Lucknow, Lucknow, India

2. Mechanical Engineering Department, B.I.E.T. Jhansi, Jhansi, India

Abstract

This study investigates the combined effect of severe plastic deformation via multi-axial compression (MAC) and subsequent double-step aging on the microstructure and mechanical properties of annealed 7075 Al alloy. Three distinct processes were employed: (1) double-step aging on the annealed sample, (2) double-step aging on the six-MAC pass processed sample, and (3) double-step aging without solutionization on the six-MAC pass sample. Process (2) yielded the most significant improvements in mechanical properties. Compared to the annealed sample, the six-MAC pass, double-step aged sample exhibited an average ultimate tensile strength increase of 134% and an average Vickers micro-hardness (HV) increase of 209%. This superior performance is likely attributable to the synergistic effect of grain refinement induced by MAC and precipitate hardening achieved through double-step aging. A comprehensive analysis of microstructure evolution, mechanical properties, fractography, and the relationship between them was conducted for all three processes. This in-depth examination provided valuable insights into the mechanisms governing the observed property enhancements, particularly in process (2). Additionally, a variety of characterization techniques were employed to comprehensively evaluate the material's mechanical and microstructural characteristics.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3