Dissolution and evolution effects on pressure fluctuations in a space micropump

Author:

Ren Zhipeng1,Hao Honglei1,Li Deyou1ORCID,Wang Hongjie1ORCID,Liu Jintao2,Li Yong2

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China

2. Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology, Beijing Institute of Control Engineering, Beijing, China

Abstract

The purpose of this paper is to reveal the dynamic mass transfer effects between gas and liquid on pressure fluctuations in a space micropump using our proposed computational model of gas–liquid mass transfer. Complex dissolution and evolution processes were applied to achieve accurate dynamic gas–liquid mass transfer predictions in the micropump. The validation of experiments was conducted by measuring the performance characteristics of the micropump, and the mass transfer model was verified by a dissolved oxygen concentration experiment in plug discharge flow. Based on this, four conditions including unsteady single-phase, two-phase without mass transfer, dissolution, and coexisting dissolved–released flows calculations are discussed to clarify the frequency contents, generation reasons, and propagation law. Combined with entropy production analysis, the pressure fluctuation influenced by the dissolution and evolution is illustrated. The results exhibit that the evolution of the gas is located on the head of the long blade suction surface in the impeller. When a unidirectional gas-to-liquid dissolution process occurs, the fluctuating amplitude of the characteristic dominant 5 fn is significantly weakened; otherwise, when dissolution and evolution coexist, the amplitude is significantly promoted as the released gas increase the flow instability. In addition, the distributions of local high entropy production induced by mean and fluctuating velocity gradients overlap that of large mass transfer rates and high amplitude of the mixing frequency in the volute, exhibiting the relationship between entropy production, mass transfer, and flow instability. The current study provides a guidance that the dissolved gases’ concentration must be controlled strictly to avoid the evolution of gas for the safety and stability of the space hydraulic system.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3