A Study of Arginase Expression in Chronic Non-healing Wounds

Author:

Dixit Ruhi1,Debnath Abhik1,Mishra Suman2,Mishra Rajnikant2,Bhartiya Satyanam K.1,Pratap Arvind1,Shukla Vijay K.1ORCID

Affiliation:

1. Institute of Medical Science, Banaras Hindu University, Varanasi, India

2. Institute of Sciences, Banaras Hindu University, Varanasi, India

Abstract

Arginase expression has been recently shown to increase in numerous disease states like neurodegeneration, inflammation, and malignancies. Although it has been found to be functionally important in various disease pathologies, little is known about its role in wound healing. Here, we look at the expression of arginase and its isoforms in chronic non-healing wounds and also study the expression of nitric oxide synthase (NOS) and oxidative stress enzymes in them. Wound tissues and blood samples were collected at the time of index presentation and follow-up from 61 chronic non-healing wound cases. The expression patterns of arginase isoenzymes, NOS, superoxide dismutases (SOD), lactic acid dehydrogenase (LDH), and catalase were examined by using enzyme-linked immunosorbent assay, immunohistochemistry, and western blot analysis at the transcript and protein level. We reported a significant decrease of serum arginase levels in chronic nonhealing wounds in the progress of wound healing. Interestingly, tissue arginase levels were found to be increased with improved wound condition at follow-up. Tissue NOS, LDH, and catalase activity were also found to be increased with the progress of healing, whereas SOD levels were downregulated. Our findings reported increased expression at the transcript level of arginase-I and arginase-II in chronic non-healing wounds for the first time. In conclusion, we observed decreased serum arginase levels in completely healed patients as compared to non-healed cases. Our study findings support the hypothesis that inhibition of the activity of arginase delays wound healing. Arginase and iNOS may also find their place in the future as possible biomarkers for wound healing.

Publisher

SAGE Publications

Subject

General Medicine,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3