Autonomous vehicle platoon overtaking at a uniform speed based on improved artificial potential field method

Author:

Chen Yan12,Su Liang3,Zhang Yong12,Zhang Feng12ORCID,Gong Gang3

Affiliation:

1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, China

2. Fujian Key Laboratory of Green Intelligent Drive and Transmission for Mobile Machinery, Xiamen, China

3. Xiamen King Long United Automotive Industry Co., Ltd., Xiamen, China

Abstract

Amidst the advancements in autonomous driving technology, platoons composed of autonomous vehicles have garnered significant attention due to their potential to alleviate traffic congestion and enhance transportation capacity. Addressing the issue of slow-moving vehicles obstructing the roadway, this study introduces a consistent overtaking strategy, leveraging an improved artificial potential field (IAPF) method. Through the incorporation of a velocity repulsive force field, a refined obstacle position repulsive force field, and a road boundary repulsive force field, the cumulative resultant force vector experienced by the autonomous vehicle is treated holistically. This approach ensures that the vehicle traverses in the direction of the total resultant force unit vector at a predefined speed. Moreover, the repulsive and attractive force coefficients are determined to guarantee convoy safety and uniform velocity. This research sets forth the architecture of the autonomous vehicle platoon, reconceptualizing overtaking maneuvers as dynamic target-tracking challenges. Throughout the overtaking phase, the obstructive vehicle is chosen either based on specific criteria fulfillment or by designating the lead vehicle's speed to a virtual dynamic target, thus safeguarding the overtaking procedure against potential collisions. Comprehensive simulations, conducted using Matlab and Unreal Engine software platforms, corroborate the efficacy and viability of the IAPF-based consistent speed overtaking strategy. Relative to the conventional APF approach, this method facilitates safe obstacle circumvention in dynamic settings and ensures vehicle velocity remains unaffected by resultant force fluctuations, maintaining consistent speed during overtaking.

Funder

the National Key Research and Development Program of China

Publisher

SAGE Publications

Reference32 articles.

1. Impacts of Cooperative Adaptive Cruise Control on Freeway Traffic Flow

2. Cooperative Adaptive Cruise Control Implementation of Team Mekar at the Grand Cooperative Driving Challenge

3. Park BB, Malakorn K, Lee J. Quantifying benefits of cooperative adaptive cruise control towards sustainable transportation system. Tech Report, May 2011. University of Virginia, Center for Transportation Studies.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3