On-board model predictive control for autonomous lane keeping with fuzzy preview distance: Design and experiment

Author:

Huang Wei1ORCID,Xia Wei1,Wu Zhengxiao1,Liu Xinjie1,Shi Tianhua2,Peng Yuhui1,Zhu Shaopeng3

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, People’s Republic of China

2. Xiamen Golden Dragon Bus Company Ltd., Xiamen, People’s Republic of China

3. Power Machinery and Vehicular Engineering Institute, College of Energy Engineering, Zhejiang University, Hangzhou, People’s Republic of China

Abstract

This paper concerns with the development of computationally efficient lane keeping control method for the autonomous vehicles. To obtain autonomous lane keeping, model predictive control (MPC) scheme was intensively investigated in the previous studies owing to its inherent advantage of dealing with constrained multivariable systems. However, the tradeoff problem between the good tracking performance and the low computational complexity is inevitably raised in developing of MPC-based lane keeping technology. To alleviate the conflict between performance and cost, an on-board MPC with fuzzy preview distance is designed in this study. A linear system dynamics model is used in the MPC design to reduce the computational cost, and a fuzzy logic algorithm is developed to select an appropriate preview distance for enhancing the MPC performance. Further, hardware-in-the-loop test is adopted to explore the effectiveness and efficiency of the proposed control method. In comparison to the proportional-integral controller, the experimental results show that the MPC is more sensitive to the selective value of fixed preview distance. Since the significant impact of preview distance selection on the MPC-based lane keeping performance, the fuzzy logic algorithm is of the essence in terms of selecting the appropriate preview distance for MPC enhancement under different vehicle speed and road curvature. Eventually, experimental results validate that the proposed fuzzy preview distance algorithm can effectively improve the MPC-based lane keeping performance for autonomous vehicles subject to limited computational resource.

Funder

Youth Teacher Educational Research Fund of the Fujian Provincial Education Office

Natural Science Foundation of Fujian Province

Science and Technology Plan Guided Project of Fujian Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3