Experimental evaluation of the torsional vibration characteristics of a dual-mass flywheel based on multi-condition and multi-index methods

Author:

Yan Zhengfeng1,Nie Hongfei1ORCID,Liu Shaofei1,Zhang Bo2,Tan Guanhua2

Affiliation:

1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, People’s Republic of China

2. Tri-Ring Automotive Clutches Co.LTD, Huangshi, People’s Republic of China

Abstract

Vehicle ride comfort is significantly influenced by powertrain torsional vibration. A multi-condition and multi-index evaluation method of the torsional vibration of the powertrain is proposed in this paper, which selects different evaluation indices according to the characteristics of different working conditions. First, the torsional vibration excitation source of the powertrain is analyzed. The selected indices are the speed amplitude value obtained with the root mean square value, the vibration dose value, the peak-to-peak value, the vibration isolation rate ([Formula: see text]), and the speed fluctuation attenuation rate ([Formula: see text]). Second, the torsional vibration characteristics of ignition, idle, startup, acceleration, deceleration, and switching from tip-in to tip-out are analyzed, and the torsional vibration evaluation indices of each working condition are determined. Then the torsional characteristics of a dual-mass flywheel (DMF) are tested before and after optimization, and the vehicle is tested according to the selected working conditions. Finally, by removing the trend term in the extracted data, the speed amplitude is obtained to calculate the evaluation indices for each working condition. The test results show that the damping performance is improved after the optimization of the DMF, and the evaluation indices under different working conditions are improved by approximately 7% in general, the magnitude of the indices under each working condition showed the same trend, which verifies the feasibility of the evaluation for the multi-condition and multi-index methods and provides references for evaluating the torsional vibration of the powertrain.

Funder

the Open Project of state Key Laboratory of Engine and Powertrain System in 2023

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3