Development of the active disturbance rejection control method for increasing the stability of the long articulated vehicle

Author:

Esmaeili Naser1ORCID,Kazemi Reza1

Affiliation:

1. Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

Abstract

Today, with the increasing growth in road traffic, many countries are welcoming long articulated vehicles because of their economic and environmental benefits and the positive effects on the problem of traffic congestion and the reduction in fuel consumption and environmental pollutants. The major problem with such vehicles is poor maneuverability at low speeds and inappropriate lateral performance at high speeds, resulting in accidents and financial losses. Therefore, in order to improve their safety, they need a control system that can improve the performance of the long articulated vehicles. In this article, a 19-degree of freedom dynamic model of the long articulated vehicle has been developed in MATLAB software. This vehicle consists of a tractor and two semi-trailer units. To adjust the articulated vehicle lateral dynamics, a robust control method based on the combination of active disturbance rejection control and back-stepping sliding mode control is introduced. Four control variables such as yaw rate and lateral velocity of the tractor and also first and second articulation angles are regulated by steering the axles of the tractor and two trailers. Furthermore, in order to measure the state variables of the long articulated vehicle, the extended Kalman filter is used. The results of the simulation in high-speed lane change and low-speed steep steer maneuvers indicate the superiority of this method over linear-quadratic regulator and sliding mode controllers. Finally, the robustness of this controller than conventional sliding mode and active disturbance rejection sliding mode controllers have been shown in the presence of noises.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3