Model predictive control allocation based on adaptive sliding mode control strategy for enhancing the lateral stability of four-wheel-drive electric vehicles

Author:

Ao Di1ORCID,Wong Pak Kin1ORCID,Huang Wei23ORCID

Affiliation:

1. Department of Electromechanical Engineering, University of Macau, Macau, China

2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China

3. Xiamen Golden Dragon Bus Company Ltd., Xiamen, China

Abstract

A novel hierarchical direct yaw moment controller is designed to enhance the lateral stability of the four-wheel-drive electric vehicle. The adaptive sliding mode control (ASMC) technique in the upper-layer controller is employed to compute an additional yaw moment. The lower-layer controller distributes this yaw moment into each independent wheel by utilizing model predictive control allocation (MPCA). The proposed MPCA aims to mitigate the performance deterioration induced by in-wheel motor dynamics and optimize the power consumption stemming from the additional yaw moment. Co-simulation and hardware-in-the-loop (HIL) test is conducted to verify the performance of the proposed controller. Validation results show that the proposed hierarchical ASMC-MPCA controller outperforms the sliding mode control MPCA (SMC-MPCA) and the integrated nonlinear model predictive control (NMPC) with the lowest root-mean-square errors [Formula: see text] of yaw rate, sideslip angle, lateral deviation, and lowest power consumption. Additionally, the chattering phenomenon in SMC-MPCA can be suppressed effectively by adaptively estimating the parameter uncertainties. The proposed ASMC-MPCA controller also consumes less computational resources than the NMPC and SMC-MPCA, which indicates that the ASMC-MPCA is more suitable for an automotive onboard controller. The comparison between hierarchical and integrated controller frameworks also shows that the hierarchical framework is more suitable for production vehicles under non-powerful vehicle control units.

Funder

Natural Science Foundation of Fujian Province

basic and applied basic research foundation of guangdong province

Universidade de Macau

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3