Adaptive parameter optimal energy management strategy based on multi-objective optimization for range extended electric vehicle

Author:

Liu Hanwu1ORCID,Lei Yulong1,Fu Yao1,Li Xingzhong1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, School of Automotive Engineering, Jilin University, Changchun, China

Abstract

With the aim of economy improvement, emission reduction and prolonging the battery service life, an adaptive parameter optimal energy management strategy is proposed for range extended electric vehicle and a method of multi-objective optimization (MOO) is proposed. Firstly, two strategies based on different threshold parameter types, namely velocity-switch-based multi-operation-point control strategy (MCS v–b) and power-switch-based multi-operation-point control strategy (MCS p–b) are designed. Then, the oil-electric conversion loss rate, comprehensive exhaust emission, and battery capacity loss rate are selected as the optimization objectives. The barebones multi-objective particle swarm optimization is applied in MCS v–b and MCS p–b for solving the MOO problem. The simulation results show a clear conflict that three optimization objectives cannot be optimal under the same solution. And then, the individual with optimal comprehensive objective is taken as the final optimization solution to evaluate the performance of the proposed methodology. As expected, the proposed MCS p–b has a positive effect on prolonging the battery service life while ensuring high fuel economy and low emission. Experimental test results thoroughly validate the proposed approach and this result can be used to improve comprehensive performance levels.

Funder

Science and Technology Project of Qingdao

national key research and development program of china

“Thirteenth Five-Year Plan” Science and Technology Project of Jilin Provincial Department of Education

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3