Research on two stage obstacle-avoidance trajectory planning and trajectory tracking control in curves

Author:

Hou Baolong1ORCID,Sun Qinyu1,Guo Yingshi1

Affiliation:

1. Chang’an University, Weishui Campus, Weiyang District, Xian City, Shaanxi Province, China

Abstract

The existing obstacle-avoidance trajectory planning and trajectory tracking control algorithms have limitations such as long-time consumption, high failure rate in dynamic traffic environments, and insufficient trajectory tracking accuracy in curved roads. Based on the above problems, this paper designs a two stage obstacle-avoidance trajectory planner based on nonlinear optimization theory. In first stage Part-NLP, only considering the safety obstacle avoidance, a point mass model and linearization constraints are established to quickly solve the initial trajectory. In the second stage Full-NLP, considering smooth soft constraints comprehensively, the initial trajectory is optimized by establishing driving corridors and a lightweight iterative framework. In control module, this paper selects a linear quadratic form lateral trajectory tracking controller, and the parameters were optimized through the carnivorous plant algorithm. The joint simulation results show that in dynamic traffic environment of curved roads, the two stage planner proposed can accurately plan safe and smooth obstacle avoidance trajectories, and there is a significant reduction in time consumption compared to traditional NLP algorithms. The control strategy can accurately track the planned trajectories, with lateral error controlled within plus or minus 0.1 m, heading error controlled within plus or minus 0.15 rad, speed tracking error controlled within plus or minus 0.15 m/s, and vehicle yaw angle error controlled within plus or minus 0.04 rad; the hardware-in-loop test results indicate that the controller can achieve real-time and accurate trajectory tracking.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3