Applied Machine Learning Method to Predict Children With ADHD Using Prefrontal Cortex Activity: A Multicenter Study in Japan

Author:

Yasumura Akira12,Omori Mikimasa13,Fukuda Ayako1,Takahashi Junichi4,Yasumura Yukiko5,Nakagawa Eiji6,Koike Toshihide7,Yamashita Yushiro8,Miyajima Tasuku9,Koeda Tatsuya1011,Aihara Masao12,Tachimori Hisateru1,Inagaki Masumi1

Affiliation:

1. National Center of Neurology and Psychiatry, Kodaira, Japan

2. The University of Tokyo Hospital, Bunkyo, Japan

3. Showa Women’s University, Setagaya, Japan

4. Fukushima University, Fukushima, Japan

5. Saitama Junshin Junior College, Saitama, Japan

6. National Center Hospital, Kodaira, Japan

7. Tokyo Gakugei University, Koganei, Japan

8. Kurume University School of Medicine, Fukuoka, Japan

9. Tokyo Medical University, Shinjuku, Japan

10. Tottori University, Tottori, Japan

11. National Center for Child Health and Development, Setagaya, Japan

12. University of Yamanashi, Kofu, Japan

Abstract

Objective: To establish valid, objective biomarkers for ADHD using machine learning. Method: Machine learning was used to predict disorder severity from new brain function data, using a support vector machine (SVM). A multicenter approach was used to collect data for machine learning training, including behavioral and physiological indicators, age, and reverse Stroop task (RST) data from 108 children with ADHD and 108 typically developing (TD) children. Near-infrared spectroscopy (NIRS) was used to quantify change in prefrontal cortex oxygenated hemoglobin during RST. Verification data were from 62 children with ADHD and 37 TD children from six facilities in Japan. Results: The SVM general performance results showed sensitivity of 88.71%, specificity of 83.78%, and an overall discrimination rate of 86.25%. Conclusion: A SVM using an objective index from RST may be useful as an auxiliary biomarker for diagnosis for children with ADHD.

Publisher

SAGE Publications

Subject

Clinical Psychology,Developmental and Educational Psychology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3