Rapid prototyping method for 3D PDMS microfluidic devices using a red femtosecond laser

Author:

Saadat Mozafar1,Taylor Marie1,Hughes Arran1ORCID,Hajiyavand Amir M1

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham, UK

Abstract

A rapid prototyping technique is demonstrated which uses a red femtosecond laser to produce a metallic mould which is then directly used for the replica moulding of PDMS. The manufacturing process can be completed in less than 6 h making it a viable technique for testing new designs quickly. The technique is validated by creating a microfluidic device with channels of height and depth of 300 µm, with a ramp test structure where the height and width of the channels reduces to 100 µm to demonstrate the techniques 3D capabilities. The resulting PDMS device was easily removed from the metallic mould and closely replicated the shape aside the expected shrinkage during thermal curing. As the technique uses a single replica process, the surface roughness at the base of the channels corresponds to the un-ablated polished metal mould, resulting in a very low surface roughness of 0.361 nm. The ablated metallic mould surface corresponds to the top of the PDMS device, which is bonded to glass and does not affect the flow within the channels, reducing the need for optimisation of laser parameters. Finally, the device is validated by demonstrating laminar flow with the no-slip condition.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3