Pareto optimal train scheduling for urban rail transit using generalized particle swarm optimization

Author:

Chu Wenjun1,Zhang Xingchen1,Chen Junhua1,Sun Xu2

Affiliation:

1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China

2. College of Civil and Transportation Engineering, Hohai University, Nanjing, China

Abstract

In urban rail transport, train timetable plays a crucial role, whose quality determines the whole system’s performance to a large extent. In practical urban rail operation, two contradictive aspects—service quality and operation cost—should be considered during train scheduling. A good train timetable should achieve considerable service quality with as little operation cost as possible. Previously, many studies have been conducted specific to urban rail train scheduling, although most of them do not put enough emphasis on its multi-objective nature. In this article, therefore, Pareto optimal urban rail train scheduling which can give more instruction to practical operation is studied. First, referring to some existing studies, the problem is reasonably defined, which takes time-dependent origin–destination demand as the input and aims at minimizing the passengers’ total travel time and the number of used train stocks. Then, an efficient iteration algorithm and a valid train stock assignment procedure are designed to calculate the passengers’ total travel time and required train stock number, respectively. On that basis, the studied problem is reasonably formulated as a bi-objective optimization model and a Pareto-based particle swarm optimization procedure is designed to solve it. Finally, with two different scaled urban rail lines, the whole methodology is illustrated and the algorithm is tested.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3