An experimental study on torque characteristics of magnetorheological brake with modified magnetic core shape

Author:

Sohn Jung Woo1,Gang Han Gyeol1,Choi Seung-Bok2

Affiliation:

1. Department of Mechanical Design Engineering, Kumoh National Institute of Technology, Gumi, South Korea

2. Department of Mechanical Engineering, Inha University, Incheon, South Korea

Abstract

In this article, a new type of magnetorheological brake is designed and its torque characteristics are investigated experimentally. The proposed magnetorheological brake consists of an outer housing, a rotating drum, magnetorheological fluid, and a copper wire coiled magnetic core to generate a magnetic field. At first, the structural configurations of the magnetorheological brakes are presented with conventional and modified magnetic core shape. To achieve enhanced braking torque under limited small size, a modified magnetic core shape is adopted in the proposed magnetorheological brake. After manufacturing the magnetorheological brakes and measurement of braking torque, it is verified that the proposed magnetorheological brake with modified magnetic core shape has improved braking torque compared to conventional-type magnetorheological brake. For the actuator application, the dynamic characteristics, such as rising time, settling time, and falling time, of the proposed magnetorheological brake is also experimentally evaluated by observing the step response. In addition, the torque tracking control performance is also investigated by adopting fuzzy–proportional–integral–derivative control algorithm for desired input of sinusoidal and multi-magnitude step input. It is demonstrated that the proposed magnetorheological brake can be successfully used as an actuator with limited small size.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3