Effect of roughness on meshing power loss of planetary gear set considering elasto-hydrodynamic lubrication

Author:

Wang Xinlei12,Xiang Changle1,Li Chunming13,Li Shenlong3,Shao Yimin4,Wang Liming4ORCID

Affiliation:

1. School of Vehicle and Mechanical Engineering, Beijing Institute of Technology, Beijing, China

2. China North Industries Corp., Beijing, China

3. China North Vehicle Research Institute, Beijing, China

4. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China

Abstract

Meshing power loss is one of the most important parts in power loss calculation of planetary gear set. However, most of the conventional methods assumed the friction coefficient between gears as a constant value in the meshing power loss calculation, and most importantly, the influence of gear tooth surface geometry is usually ignored, for example, roughness. Therefore, a new meshing power loss calculation model for planetary gear set that considers tooth surface roughness is proposed on the basis of elasto-hydrodynamic lubrication method. With the proposed model, a planetary gear set dynamic model that considers friction force between gears is first established to study the time-varying meshing forces, sliding speeds, and curvature radii of the gear pairs. Then, an elasto-hydrodynamic lubrication model of the gear pair contact interface is constructed to investigate and modify the friction force distribution in the gear meshing process of the dynamic model iteratively until the meshing forces converge to stable values. Furthermore, the relationship between the tooth surface roughness and film thickness is studied in the elasto-hydrodynamic lubrication model. After that, the meshing power loss is calculated based on the obtained meshing forces, friction coefficients, sliding speeds, and so on. The results show that there is a sudden growth of the meshing power loss at the end of the meshing cycle, which has a good agreement with the meshing force impact. And, it is found that tooth surface roughness has a direct influence on the meshing power loss of sun–planet gear pair, which yields an increasing tendency as the surface roughness growing.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3