Ballistic impact performance and surface failure mechanisms of two-dimensional and three-dimensional woven p-aramid multi-layer fabrics for lightweight women ballistic vest applications

Author:

Abtew Mulat Alubel1234ORCID,Boussu François12ORCID,Bruniaux Pascal12,Loghin Carmen3,Cristian Irina3,Chen Yan4,Wang Lichaun4

Affiliation:

1. University of Lille 1, Nord de France, France

2. Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), Roubaix, France

3. Faculty of Textiles, Leather and Industrial Management, “Gheorghe Asachi” Technical University of Iasi, Romania

4. College of Textile and Clothing Engineering, Soochow University, Suzhou, China

Abstract

This paper investigates the influences of woven fabric type, impact locations and number of layers on ballistic impact performances of target panels through trauma dimension and panel surface damage mechanisms for lightweight women ballistic vest design. Three panels with 30, 35 and 40 layers of two-dimensional plain weave and another two panels with 30 and 40 layers of three-dimensional warp interlock fabrics were prepared. The three-dimensional woven fabric was manufactured using automatic Dornier weaving machine, whereas the two-dimensional fabric (with similar p-aramid fibre type (Twaron®)) was received from the Teijin Company. The ballistic tests were carried out according to NIJ Standard-0101.06 Level IIIA. Based on the result, woven fabric construction type, number of layers and target locations were directed an upshot on the trauma measurement values of the tested target panels. For example, 40 layers of two-dimensional plain weave fabric panels show lower trauma measurement values as compared to its counterpart three-dimensional warp interlock fabric panels with similar layer number. Moreover, 40 layers of two-dimensional fabric panels revealed 47% and 39% trauma depth reduction as compared to panels with 30 layers of two-dimensional fabric panel in moulded (target point 1) and non-moulded (target point 6), respectively. Due to higher amount of primary yarn involvement, two-dimensional plain weave fabric panel face higher level of local surface damages but less severe and fibrillated yarns than three-dimensional warp interlock fabrics panels. Moreover, three-dimensional warp interlock fabric panels required higher number of layers compared to two-dimensional plain weave aramid fabrics to halt the projectiles. Similarly, based on the post-mortem analysis of projectile, higher projectile debris deformation was recorded for panels having higher number of layers for both types of fabrics at similar target locations.

Funder

Erasmus mundus SMDTex Program funded by European commission

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3