Study on high velocity impact response of aramid fibers-epoxy/aluminum laminate composites toughened by ZrO2 and SiO2 nanoparticles

Author:

Abedi Mohammad Hossein1ORCID,Eslami-Farsani Reza1ORCID

Affiliation:

1. Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

The present study investigates the improvement in high-velocity impact response of fiber metal laminates through modification of epoxy using different percentages (0, 1, 3, and 5 wt.%) of SiO2 and ZrO2 nanoparticles. To ensure a good distribution of nanoparticles into epoxy resin, the nanoparticles were dispersed by a high-speed shear mixer followed by an ultrasonic device. By using the hand lay-up technique followed by a mold pressing process, FML samples were made of 2024-T3 aluminum sheets (0.5 mm thick) and woven Kevlar fabric impregnated with modified epoxy. The high-velocity impact test on FML samples was conducted to determine the influence of epoxy modification on their specific energy absorption. The study revealed that the modification of epoxy increased the specific energy absorption up to 130% and 91% at samples with 3 wt.% of SiO2 and 5 wt.% of ZrO2, respectively. It was also observed from scanning electron microscopy analysis that incorporation of ceramic nanoparticles changed the delamination failure mechanism of matrix cracking to fiber breakage. Furthermore, finite element simulation (FES) was additionally conducted with Abaqus to predict the residual velocity and model impact response. The simulation results agree well with experimental data.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3