Feasibility of wearable devices and machine learning for sleep classification in children with Rett syndrome: A pilot study

Author:

Migovich Miroslava1ORCID,Ullal Akshith2,Fu Cary3,Peters Sarika U34,Sarkar Nilanjan12

Affiliation:

1. Department of Mechanical Engineering, Vanderbilt University, Nashville, TN,USA

2. Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA

3. Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA

4. Vanderbilt Kennedy Center, Nashville, TN, USA

Abstract

Sleep is vital to many processes involved in the well-being and health of children; however, it is estimated that 80% of children with Rett syndrome suffer from sleep disorders. Caregiver reports and questionnaires, which are the current method of studying sleep, are prone to observer bias and missed information. Polysomnography is considered the gold standard for sleep analysis but is labor and cost-intensive and limits the frequency of data collection for sleep disorder studies. Wearable digital health technologies, such as actigraphy devices, have shown potential and feasibility as a method for sleep analysis in Rett syndrome, but have not been validated against polysomnography. Furthermore, the collected accelerometer data has limitations due to the rigidity, periodic limb movement, and involuntary muscle contractions prevalent in Rett syndrome. Heart rate and electrodermal activity, along with other physiological signals, have been linked to sleep stages and can be utilized with machine learning to provide better resistance to noise and false positives than actigraphy. This research aims to address the gap in Rett syndrome sleep analysis by comparing the performance of a machine learning model utilizing both accelerometer data and physiological data features to the gold-standard polysomnography for sleep analysis in Rett syndrome. Our analytical validation pilot study ([Formula: see text] = 7) found that using physiological and accelerometer features, our machine learning models can differentiate between awake, non-rapid eye movement sleep, and rapid eye movement sleep in Rett syndrome children with an accuracy of 85.1% when using an individual model. Additionally, this work demonstrates that it is feasible to use digital health technologies in Rett syndrome, even at a young age, without data loss or interference from repetitive movements that are characteristic of Rett syndrome.

Funder

National Center for Advancing Translational Sciences

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3