Generalizing factors of COVID-19 vaccine attitudes in different regions: A summary generation and topic modeling approach

Author:

Liu Yang1ORCID,Shi Jiale2,Zhao Chenxu2,Zhang Chengzhi3

Affiliation:

1. School of Information Management, Wuhan University, Wuhan, China

2. School of Computer Science, Wuhan University, Wuhan, China

3. Department of Information Management, Nanjing University of Science & Technology, Nanjing, China

Abstract

Objective The goal of this study is to use summary generation and topic modeling to identify factors contributing to vaccine attitudes for three different vaccine brands, with the aim of generalizing these factors across different regions. Methods A total of 5562 tweets about three vaccine brands (Sinovac, AstraZeneca, and Pfizer) were collected from 14 December 2020 to 30 December 2021. BERTopic clustering is used to group the tweets into topics, and then contrastive learning (CL) is adopted to generate summaries of each topic. The main content of each topic is generalized into three factors that contribute to vaccine attitudes: vaccine-related factors, health system-related factors, and individual social attributes. Results BERTopic clustering outperforms Latent Dirichlet Allocation clustering in our analysis. It can also be found that using CL for summary generation helped to better model the topics, particularly at the center-point of the clustering. Our model identifies three main factors contributing to vaccine attitudes that are consistent across different regions. Conclusions Our study demonstrates the effectiveness of deep learning methods for identifying factors contributing to vaccine attitudes in different regions. By determining these factors, policymakers and medical institutions can develop more effective strategies for addressing concerns related to the vaccination process.

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3