The multi-targets mechanism of hydroxychloroquine in the treatment of systemic lupus erythematosus based on network pharmacology

Author:

Xie Bo1ORCID,Geng Qingwei1,Xu Jinhui1,Lu Haojie1,Luo Haixin1,Hu Yebei1,Song Xiuzu1

Affiliation:

1. Department of Dermatology, Hangzhou Third People’s Hospital, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China

Abstract

Background Network pharmacology is used with bioinformatic tools to broaden the understanding of drugs’ potential targets and the intersections with key genes of particular disease. Here we applied network pharmacology to collect testable hypotheses about the multi-targets mechanism of hydroxychloroquine (HCQ) against systemic lupus erythematosus (SLE). Methods Firstly, we predicted the potential targets of HCQ. Secondly, we got the related genes of SLE returned from databases. Thirdly, the intersections of the potential targets (HCQ) and related genes (SLE) were analyzed with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, we validated our predictions of the potential targets by performing docking studies with HCQ. Results The results suggest that the efficacy of HCQ against SLE is mainly associated with the targets of cyclin-dependent kinase 2 (CDK2), estrogen receptor alpha (ESR1) and CDK1, which regulate PI3K/Akt/GSK3β as well as interferon (IFN) signaling pathway. Biological process of the network associated with the three targets is concentrated in the inhibition of immune response, negative regulation of gene expression and regulation of immune system process. Molecular docking analysis proves that hydrogen bonding and π-π stacking are the main forms of interaction. Conclusions Our research provides protein targets affected by HCQ in the treatment of SLE. Three key targets (CDK2, ESR1 and CDK1) involving 1766 proteins become the multi-targets mechanism of HCQ in the treatment of SLE. As well, the research also provides a new idea for introducing network pharmacology into the evaluation of the drugs with multi-targets in dermatology.

Funder

Basic Public Welfare Research Project of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3