Assay Miniaturization for Ultra-High Throughput Screening of Combinatorial and Discrete Compound Libraries: A 9600-Well (0.2 Microliter) Assay System

Author:

Oldenburg Kevin R.1,Zhang Ji-Hu1,Chen Tongming1,Maffia Anthony1,Blom Karl F.1,Combs Andrew P.1,Chung Thomas D.Y.1

Affiliation:

1. DuPont Merck Pharmaceutical Company, Department of Leads Discovery, Wilmington, DE 19880-0400

Abstract

Combinatorial chemistry has opened a new realm of chemical entities in the search for novel therapeutics. Combinatorial chemistry is currently adding hundreds of thousands of compounds to similar numbers available from years of synthesis by medicinal chemistry. It is not unreasonable to expect that over the next several years, nearly a million compounds will be available for screening against each therapeutic target. The number of potential targets will also be increasing with the advances in genomics. With the increasing number of compounds to be screened against an increasing number of targets, it is becoming increasingly difficult and costly to obtain the required amounts of key biological material needed to screen these compounds. One obvious solution is to miniaturize the assays so that the biological reagent supply doesn't need to increase. To this end, we have developed an ultra-high throughput screening system comprised of a new plate design (9600-well), detection system, and liquid handling system. This new format is capable of performing assays in as little as 0.2 Al. The results obtained from this system compare favorably to those obtained in the standard 96-well format.

Publisher

Elsevier BV

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3