Wear particles image enhancement using long short-term memory 3D recurrent reconstruction neural network (LSTM 3D-R2N2)

Author:

Xi Yinhu1,Zhang Haohao1ORCID,Li Bo2

Affiliation:

1. School of Mechanical and Electrical Engineering, Anhui University of Science and Technology, Huainan, China

2. Department of Mechanical Engineering, Xi’an Shiyou University, Xi’an, China

Abstract

3D modeling of wear particles has proven to be a useful tool for monitoring mechanical failure conditions. In this work, a new method for 3D reconstruction of wear particles in uncontaminated oil (healthy oil) and contaminated oil (used oil) was proposed. The image acquisition device can capture multi-view images of moving wear particles in both healthy and used oil by using the reflected light. The images were pretreated first, and the image color inversion was conducted using the Pillow library. The pretreated wear particle images were used for 3D reconstruction using long short-term memory 3D recurrent reconstruction neural network. The current results were verified against existing results, and good agreement can be found. It can be concluded that we can reconstruct the similar 3D wear particle results with fewer images by comparison with other methods. Specifically, only 4–6 image samples were used for the 3D reconstruction of wear particles, and at least 8 image samples were needed for other existing reports.

Funder

National Natural Science Foundation of China

Anhui University of Science and Technology

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3