Deformation prediction and compensation of a dual-machine riveting system for aircraft assembly

Author:

Liu Jintong12,Zhu Zhendong2,Zhang Qiang2,Dong Huiyue2,Bi Yunbo12

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic System, College of Mechanical Engineering, Zhejiang University, Hangzhou, China

2. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, China

Abstract

Automatic riveting systems play a crucial role in the field of aircraft manufacturing. In the riveting process, the machine tool bears a large axial squeezing force, and the resulting deformation will inevitably affect the riveting quality. In this paper, a dual-machine riveting system is developed first, the kinematic chain model and the lower-numbered body of the system structure are constructed sequentially. Then, considering the interaction and coupling effect of the two machines in the actual riveting process, the relative stiffnesses of the dual machine in the resisting state are identified by loading tests. Based on the stiffness data at a combination of postures within the workspace, a Kriging prediction model is established to describe the relationship between stiffness and postures. According to the prediction results, the influence of rotational and translational axes on the spatial stiffness distribution of the riveting system is revealed. Finally, the online deformation compensation is realized by modifying the displacement of the feed axis on both sides. A riveting experiment is carried out, and the results demonstrate that the riveting quality is significantly improved after compensation.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical modeling and experimental investigation of a composite beam failure - Case study;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3