An efficient explicit dynamic formulation of a Stewart platform parallel robot via new formalism

Author:

Baji Otman El1,Amrani Nabil Ben Said1,Sarsri Driss1

Affiliation:

1. Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaadi University, Tangier, Morocco

Abstract

In this paper, an explicit dynamic model for the 6-DOF Stewart platform parallel manipulator is established using a new formulation. The main principle of this formulation is to provide the final form of dynamic models based on a direct and systematic procedure; in more detail, the analytical expression of each term due to the dynamic effects, that is, the system inertia tensor, centrifugal/Coriolis tensor and the environment forces are developed according to only the physical parameters of the system (i.e., mass, inertia tensor, position of the center of mass and geometrical parameters) and generalized coordinates without the need for any complicated intermediate calculations such as the potential, kinetic and acceleration energy development. In this approach, the parallel manipulator is first opened into six serial legs and a free platform. Next, the dynamic models of each sub-structure can be easily obtained based on the new formulation in their own local space. The Jacobian and Hessian matrices of the constraint equations, resulting from the closed-loop chains, are then used to combine the substructure dynamics. Finally, a detailed dynamics model of the entire robot with respect to the workspace or the actuation space is developed. After that, a simulation of the suggested methodology is investigated and analyzed in comparison to the more established dynamic modeling techniques provided in the literature; the efficiency and correctness of our approach are then verified. It is shown that our method requires a lower computational cost and even competes with the implicit form of dynamic models. Finally, a trajectory-tracking problem using model-based control is presented. It is shown that our approach can be totally and efficiently computed online without the need for symbolic form of equations of motion, which is highly challenging for parallel manipulators.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3