Application of a rolling bearing life model with surface and subsurface survival to hybrid bearing cases

Author:

Morales-Espejel Guillermo E12ORCID,Gabelli Antonio1

Affiliation:

1. Research and Technology Development, SKF Engineering and Research Centre, Nieuwegein, Netherlands

2. Université de Lyon, INSA-Lyon CNRS LaMCoS UMR5259, France

Abstract

A previously published rolling bearing life model that separates the surface and subsurface survival is briefly summarised. The model is applied to the case of hybrid bearings and discussed with regard to a selected set of application examples. Ball hybrid bearings under equal load condition show 12% higher Hertzian stress than all-steel bearings. However, field applications, typically under light load, poor lubrication and contamination, show that hybrid bearings have longer fatigue life than all-steel bearings. Traditional all-steel life models fail to predict this type of behaviour. In this paper, it is shown that hybrid bearing unique fatigue performance can be described using the idea of separation of surface and subsurface survival. The model applies the classical rolling contact fatigue in the subsurface region of the rolling contact while a newly developed tribologically dependent surface degradation models is used for the ceramic-steel raceway interface. It is found that the particular fatigue resistance of the ceramic-steel interface of the hybrid bearing raceway can, in most cases, compensate for the additional stress present in the subsurface region of the contact.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3