Nonlinear free vibrations analysis of overhung rotors under the influence of gravity

Author:

Moradi Tiaki M1,Hosseini SAA1ORCID,Shaban Ali Nezhad H1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran

Abstract

In this paper, nonlinear free vibration of a cantilever flexible shaft carrying a rigid disk at its free end (overhung rotor) is investigated. The Rayleigh beam model is used and the rotor has large amplitude vibrations. With the assumption of inextensibility, the effect of nonlinear curvature and inertia is considered. The effect of disk mass on the dynamical behavior of the system is studied in the presence and absence of gravity (horizontal and vertical rotors). By using perturbation technique (method of multiple scales), the main focus is on the influence of gravity on equations of motion and on quantities such as amplitude and damped natural frequency. Here, a different behavior is observed due to the rotor weight. Indeed, the combination effects of gyroscopic term, nonlinearity and gravity are studied on the modal behavior of the system. It is shown that the static deflection creates second order nonlinear terms and changes the nonlinear damped natural frequency. With considering of gravity, both beat and high frequency in beat phenomenon increase. With increasing of the rotor weight, the minimum value of amplitude is extremely amplified in the direction of gravity but in the other transverse direction, amplitude of vibrations decreases. In addition, it is found that the weight has directly influence on beat frequency, while the mass ratio between disk and beam affects the high frequency.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3