Elastic-plastic behavior of sandwich cylindrical shell panels with a flexible core

Author:

Shokrollahi H1,Fallah F1,Naghdabadi R1,Kargarnovin MH1

Affiliation:

1. School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

The linear static elastic-plastic behavior of sandwich cylindrical shell panels under a generally distributed loading with thick flexible core is studied. The core modeling is based on high-order theory of sandwich structures in which the in-plane stresses of the core are neglected. The faces are modeled based on Kirchhoff–Love shell theory. The materials of the faces and the core are assumed to be isotropic with linear work hardening behavior. The incremental Prandtl–Reuss plastic flow theory is used in this analysis. Using the principle of virtual displacements, the governing equations are derived and solved for any sort of boundary conditions based on elastic-plastic harmonic differential quadrature method. To validate the results of present study, various responses in different sandwich shell panel configurations are compared with the results from finite element software Ansys. The effect of core flexibility and its plastic properties as well as the initiation of yield in faces and the core are studied in detail.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Developed Transfer Matrix Method for Analysis of Elastic–Plastic Behavior of Structures;International Journal of Steel Structures;2021-07-31

2. Thermal Elastic–Plastic Analysis of Three-Dimensional Structures Using Face-Based Smoothed Point Interpolation Method;International Journal of Computational Methods;2021-03-08

3. Exact solution for frequency response of sandwich microbeams with functionally graded cores;Journal of Vibration and Control;2019-07-25

4. Elastic-plastic analysis of multi-material structures using edge-based smoothed point interpolation method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2018-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3