Butylphthalide protects against ischemia-reperfusion injury in rats via reducing neuron ferroptosis and oxidative stress

Author:

Lu Jun-Dong1,Sun Mei-Lin1,Pei-Li 1,Wang Xiao-Peng1

Affiliation:

1. Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China

Abstract

Local ischemia in the cerebra leads to vascular injury and necrosis. Ferroptosis is involved in the pathophysiological process of many diseases and widely exists when ischemia-reperfusion injury occurs in many organs. The aim of this study was to evaluate the effect of Butylphthalide (NBP) on middle cerebral artery occlusion (MCAO) rats model-caused neuron injury. Sprague Dawley Rats were randomly allocated to receive sham and MCAO operation. NBP low-dose (40 mg/kg b.w), and high-dose (80 mg/kg b.w) were administrated in MACO rats. Results showed NBP improves infarct volume, attenuates neuronal apoptosis in the brain tissue of MCAO rats. The tumor necrosis factor (TNF-α), IL-6, and malondialdehyde (MDA) levels decreased after NBP administration, while the activity of superoxide dismutase (SOD) and the ratio of GSH/GSSG in MACO rats increased. MACO caused non-heme iron accumulation in the brain tissue and Perl’s staining confirmed NBP attenuates ferroptosis in MACO rats. The protein expressions of SCL7A11 and glutathione peroxidase 4 (GPX4) decreased following MCAO, and NBP treatment subsequently increased the expression of SCL7A11 and GPX4. In vitro analysis in cortical neuron cells indicated that the GPX4 inhibitor reverses the inhibition of ferroptosis by NBP, which suggested that the SCL7A11/GPX4 pathway majorly contributed to the NBP ferroptosis protection effect.

Funder

the Biomedicine Joint Fund Cultivation Project of the Hebei provincial Natural Science Foundation

the 2020 provincial medical talents funded project

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3