Tailoring of tensile and dynamic thermomechanical properties of interleaved chemical-treated fine almond shell particulate flax fiber stacked vinyl ester polymeric composites

Author:

Ramraji K1,Rajkumar K1ORCID,Sabarinathan P1ORCID

Affiliation:

1. Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, India

Abstract

Natural fiber and particulates are being exploited to attain eco-friendly products for construction and automotive sectors. These sectors are moving towards the use of high damping characteristic natural biofibers and particulate-reinforced polymer composite as part of the structural components. In this work, woven flax fiber (0° and 90°) and almond shell particulates were used. They were subsequently treated with alkaline and acetylene chemical solution separately. Polymer composite laminates were prepared using a vinyl ester resin as matrix and by stacking flax fibers and almond particulates interleaved in an alternative sequence using the hand layup technique. This was followed by hydraulic pressing. Composite laminates were fabricated by varying the almond shell particulate weight fraction of 0%, 5%, 10%, and 15%. Mechanical properties such as tensile and flexural strength were experimentally measured. Dynamic thermomechanical analysis was conducted on the alkaline-treated and untreated composites with different frequencies for the assessment of the damping characteristics. The alkaline-treated interleaved almond shell and flax fiber composite showed considerably higher damping characteristics. This could be due to the improved adhesion between the matrix and reinforcements. An addition of almond shell particulate positively increased the strength and stiffness of composites.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3