Affiliation:
1. Department of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
2. Department of Mechanical Engineering, National Engineering College, Kovilpatti, India
Abstract
The ultrasonic-assisted stir-casting technique improves the uniform dispersion of nano-reinforcements in aluminum hybrid metal matrix composites. In the present study, the process parameters of the ultrasonic-assisted stir-casting method, such as ultrasonic vibration time, and depth of ultrasonic vibration along with the speed of mechanical stirrer, are optimized on A356 hybrid composite material optimally reinforced with aluminum nitride, multiwalled carbon nanotubes, graphite particles, and aluminum metal powder using the desirability function approach. The process parameters are optimized against the response factors such as porosity, ultimate tensile strength, and wear rate of the composites. The optimum combination of input factors is identified as stirring speed (600 r/min), ultrasonic vibration time (2 min), and depth of ultrasonic vibration (40 mm) among the selected range. The corresponding output response values are found to be porosity (1.4%), ultimate tensile strength (247 MPa), and wear rate (0.0013 mm3/min). The ANOVA results have revealed that depth of ultrasonic vibration showed significant contribution among the input factors. An artificial neural network model is developed and validated for the given set of experimental data.
Subject
Mechanical Engineering,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献