Vertical displacement of a non-Newtonian Bingham plastic by a Newtonian phase in an axially composite reservoir

Author:

Constantino Lucas1ORCID,Rodríguez-Bermudez Panters2,Francisco Alexandre Santos3ORCID,Nunes Araujo Isamara Landim4ORCID,Durán Jorge A Rodríguez5ORCID

Affiliation:

1. PPG-MCCT, Federal Fluminense University, Volta Redonda, Brazil

2. Exact Sciences Department, Federal Fluminense University, Volta Redonda, Brazil

3. Industrial Metallurgical Engineering Department, Federal Fluminense University, Volta Redonda, Brazil

4. UNICAMP, Campinas, SP, Brazil

5. Mechanical Engineering Department, Federal Fluminense University, Volta Redonda, Brazil

Abstract

In general, oil reservoirs may consist of composite sedimentary structures composed of materials such as sand, clay, or limestone, which exhibit varying lithology due to sedimentary processes. A comprehensive knowledge of this lithology is essential for accurately assessing their hydrocarbon storage and production capacity. Additionally, this information is indispensable for the implementation of various recovery techniques such as waterflooding, gas injection, surfactant injection, polymer injection, alkaline water solution injection, and others. Highly viscous oil can exhibit non-Newtonian behavior during water injection in certain cases. The use of surfactants, alkaline, or polymer solutions in enhanced oil recovery also introduces non-Newtonian behavior. Recovery methods face challenges when non-Newtonian phases, gravity, and reservoir heterogeneity are combined. Against this backdrop, this work presents a mathematical model for immiscible two-phase flow in an axially composite reservoir with a periodic-layered structure. The model considers a non-Newtonian plastic Bingham-type phase extension of the Buckley-Leverett model. To address the porous medium’s heterogeneity with discontinuous flux functions, the numerical solutions were obtained using the Lax-Friedrichs and Lagrangian-Eulerian schemes. The numerical solutions were compared to analytical solutions obtained using an extended version of Oleinik’s geometric construction for discontinuous flux functions. The outcomes display shock and rarefaction waves, as well as a fixed shock due to the porous medium heterogeneity. The numerical results closely correspond with the analytical solutions, seen particularly in the greater accuracy of the Lagrangian-Eulerian method compared to the Lax-Friedrichs method.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3