Precision Medicine in Diabetic Kidney Disease: A Narrative Review Framed by Lived Experience

Author:

Downie Mallory L.1,Desjarlais Arlene2,Verdin Nancy2,Woodlock Tania2,Collister David3ORCID

Affiliation:

1. McGill University Health Center Research Institute, Montreal, QC, Canada

2. Kidney Research Scientist Core Education and National Training Program, Montreal, QC, Canada

3. Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada

Abstract

Purpose of review: Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease (CKD) for which many treatments exist that have been shown to prevent CKD progression and kidney failure. However, DKD is a complex and heterogeneous etiology of CKD with a spectrum of phenotypes and disease trajectories. In this narrative review, we discuss precision medicine approaches to DKD, including genomics, metabolomics, proteomics, and their potential role in the management of diabetes mellitus and DKD. A patient and caregivers of patients with lived experience with CKD were involved in this review. Sources of information: Original research articles were identified from MEDLINE and Google Scholar using the search terms “diabetes,” “diabetic kidney disease,” “diabetic nephropathy,” “chronic kidney disease,” “kidney failure,” “dialysis,” “nephrology,” “genomics,” “metabolomics,” and “proteomics.” Methods: A focused review and critical appraisal of existing literature regarding the precision medicine approaches to the diagnosis, prognosis, and treatment of diabetes and DKD framed by a patient partner’s/caregiver’s lived experience. Key findings: Distinguishing diabetic nephropathy from CKD due to other types of DKD and non-DKD is challenging and typically requires a kidney biopsy for a diagnosis. Biomarkers have been identified to assist with the prediction of the onset and progression of DKD, but they have yet to be incorporated and evaluated relative to clinical standard of care CKD and kidney failure risk prediction tools. Genomics has identified multiple causal genetic variants for neonatal diabetes mellitus and monogenic diabetes of the young that can be used for diagnostic purposes and to specify antiglycemic therapy. Genome-wide-associated studies have identified genes implicated in DKD pathophysiology in the setting of type 1 and 2 diabetes but their translational benefits are lagging beyond polygenetic risk scores. Metabolomics and proteomics have been shown to improve diagnostic accuracy in DKD, have been used to identify novel pathways involved in DKD pathogenesis, and can be used to improve the prediction of CKD progression and kidney failure as well as predict response to DKD therapy. Limitations: There are a limited number of large, high-quality prospective observational studies and no randomized controlled trials that support the use of precision medicine based approaches to improve clinical outcomes in adults with or at risk of diabetes and DKD. It is unclear which patients may benefit from the clinical use of genomics, metabolomics and proteomics along the spectrum of DKD trajectory. Implications: Additional research is needed to evaluate the role of the use of precision medicine for DKD management, including diagnosis, differentiation of diabetic nephropathy from other etiologies of DKD and CKD, short-term and long-term risk prognostication kidney outcomes, and the prediction of response to and safety of disease-modifying therapies.

Publisher

SAGE Publications

Subject

Nephrology

Reference119 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3