Inspection path planning of free-form surfaces based on improved cuckoo search algorithm

Author:

Chen Yueping1ORCID,Tan Bo1ORCID,Zeng Linan1

Affiliation:

1. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China

Abstract

To address the problems of long run times, long path length and low efficiencies of traditional intelligent algorithms to optimise free-form surface inspection path algorithms, this paper proposes a method based on an improved cuckoo search algorithm. Since the basic cuckoo search algorithm suffers from problems such as low search efficiency and the tendency to fall into local optimum solutions, the basic cuckoo search algorithm is improved by using a parameter adaptive adjustment strategy and dynamic neighbourhood search strategy, so that the improved cuckoo search algorithm can obtain the optimised inspection path stably and quickly. The local composition of the free-form surface inspection path and the corresponding mathematical model are first analysed, and then traditional intelligent algorithms and the improved cuckoo search algorithm are applied to optimise the mathematical model. The results of inspection experiments conducted with an engine impeller showed that the improved cuckoo search algorithm reduced the length of the optimised inspection path by at least 8.6%, reduced the algorithm run time by at least 35%, and improved the inspection efficiency by at least 1.2% compared to those of the genetic algorithm, simulated annealing algorithm, and ant colony Optimisation algorithm. The improved cuckoo search algorithm allows for effective free-form surface inspection path Optimisation and an improved inspection efficiency.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3