Experimental investigation on heat transfer augmentation of transverse twisted tapes in a confined rectangular channel

Author:

Jaganathan KD1,Sivasubramanian M2ORCID

Affiliation:

1. Department of Mechanical Engineering, SACS MAVMM Engineering College, Madurai, India

2. Department of Automobile Engineering, School of Automotive and Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India

Abstract

This study investigates the influence of twisted tape inserts on a flow pathway in transverse direction of a flow situation. An array of twisted tapes was mounted on the confined channel to disturb the flow to enhance the heat transfer. The test section had 20 twisted tapes of 35-mm height, 10-mm width and a twist angle of 180° mounted on a silica gel–coated plate. Experiments were conducted on the fabricated experimental setup for different discharge conditions. The Reynolds number considered for the study ranged from 2300 to 3500, and the heat inputs varied from 50 to 250 W, with an interval of 50 W. To visualize the presence of twisted tapes on the flow path, the rectangular channel was visualized by laser flow visualization method, which reported the impact of the twisted tapes on the flow. The existence of twisted tape affects the flow, and it forms a swirl that provides a proper mixing of fluid to enhance heat transfer. The outcome of the present investigation provides a solution to enhance heat transfer and proposes the use of twisted tapes instead of using segmented fins in design of fins.

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3