Research on velocity measurement and relative positioning method of maglev train based on multi-sensor information fusion

Author:

Peng Zengde1ORCID,Dou Fengshan1ORCID,Long Zhiqiang1

Affiliation:

1. College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China

Abstract

This paper focuses on the optimal method of the non-contact velocity measurement and relative positioning system for medium and low speed maglev trains. By analyzing the working principle of the velocity measurement method based on counting sleepers and analyzing the speed system error and random error model, it is shown that the velocity measurement accuracy based on the counting sleeper speed measurement method needs to be further improved. Therefore, a method of using multi-sensor information fusion is proposed to improve the accuracy of velocity measurement and relative positioning. Firstly, aiming at the disturbance problem of traction, braking and suspension vibration in the attitude angle calculation and the cumulative error problem of attitude angle, a posture solution method combining the optimized second-order complementary filter and the velocity adaptation Unscented Kalman filter with maximum noise reduction is proposed; Then, in order to further reduce the accumulated error of the attitude angle and the high performance requirements of the gyroscope, the bias instability of the gyroscope is analyzed, and an adaptive wavelet de-noising algorithm based on threshold optimization is proposed; Finally, to weaken the colored noise interference caused by the suspension vibration and to weaken the velocity accumulation error, a fusion velocity measurement and positioning algorithm of multi-loop Kalman filter with acceleration fusion correction and velocity accumulation error correction is researched. The effectiveness of the proposed fusion method is verified through simulation comparison analysis and on-board engineering test. Compared with the velocity measurement method based on counting sleepers, the velocity measurement accuracy is improved by an order of magnitude, and its accuracy is comparable to the high-precision velocity measurement method based on the induction loop and GPS/INS. It has certain engineering applicability and application value.

Funder

the 13th Five-Year National Key R&D Program of China under Grant

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3