Transient stability enhancement in renewable energy integrated multi-microgrids: A comprehensive and critical analysis

Author:

Liaqat Marriam1,Alsuwian Turki2,Amin Arslan Ahmed1ORCID,Adnan Muhammad1,Zulfiqar Adil1

Affiliation:

1. Department of Electrical Engineering, FAST National University of Computer and Emerging Sciences, Chiniot, Punjab, Pakistan

2. Department of Electrical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia

Abstract

Multi-microgrids offer various benefits including the decreased overloading of a single microgrid, more options during faulty conditions, and more utilization of renewable energy resources. However, the implementation of a multi-microgrid brings the challenges such as power system complexity, interconnection issues, bidirectional power flow management, and power flow balancing. In the presence of these challenges, the power flow stability of the multi-microgrids is a challenging problem. In this context, this study evaluates a transient stability analysis model in multi-microgrids using solar photovoltaics, wind power, and a unified power flow controller (UPFC). UPFC offers a more robust power flow control strategy compared with other flexible alternating current transmission systems (FACTS) devices. First, a multi-microgrid structure consisting of the two microgrids was designed in DIgSILENT PowerFactory software. Second, the load flow calculation was performed in the absence and presence of UPFC, short circuit fault, and grid connection. Third, the electromagnetic transients (EMT) simulation was performed for all these situations. The results exhibited that the UPFC would offer significant power flow stability in the multi-microgrids. It was observed that the UPFC resulted in more transient stability in the microgrid where it was located. However, it improved the power flow quality at all the locations in the multi-microgrids. In addition, UPFC offered significant transient stability during the fault occurrence. The results offer various insights into power flow management in multi-microgrids.

Funder

Najran University

Publisher

SAGE Publications

Subject

Applied Mathematics,Control and Optimization,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3