Evaluation of the osteoconductivity and the degradation of novel hydroxyapatite/polyurethane combined with mesoporous silica microspheres in a rabbit osteomyelitis model

Author:

Wang Qi1ORCID,Du Jialei1,Sun Quanbo1,Xiao Shanwen1,Huang Wei2

Affiliation:

1. Department of Orthopedics, Affiliated Hospital of Heze Medical College, Heze, China

2. Department of Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract

Bone defects caused by osteomyelitis can lead to severe disability. Surgeons still face significant challenges in treating bone defects. Nano-hydroxyapatite (n-HA) plays an important role in bone tissue engineering due to its excellent biocompatibility and osteoconductivity. Levofloxacin (Levo) was encapsulated in mesoporous silica nanoparticles (MSNs) via electrostatic attraction to serve as a drug delivery system. MSNs were incorporated with n-HA and polyurethane (PU). The degradation and osteoconductivity properties of these novel composite scaffolds and their effectiveness in treating chronic osteomyelitis in a rabbit model were assessed. Gross pathology, radiographic imaging, micro-computed tomography, Van Gieson staining, and hematoxylin and eosin staining were conducted at 6 and 12 weeks. The group of composite scaffolds combining n-HA/PU with MSNs containing 5 mg Levo (n-HA/PU + Nano +5 mg Levo) composite scaffolds showed superior antibacterial properties compared to the other groups. At 12 weeks, the n-HA/PU + Nano +5 mg Levo composite scaffolds group exhibited significantly greater volume of new trabecular bone formation compared to the other three groups. The surface of the novel composite scaffolds exhibited degradation after 6 weeks implantation. The internal structure of the scaffolds collapsed noticeably after 12 weeks of implantation. The rate of material degradation corresponded to the rate of new bone ingrowth. This novel composite scaffold, which is biodegradable and osteoconductive, has potential as a drug delivery system for treating chronic osteomyelitis accompanied by bone defects.

Funder

Development Program of the Affiliated Hospital of Heze Medical College

Medical and Health Science and Technology Development Plan Project of Shandong Province and Scientific Research

Publisher

SAGE Publications

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3